Problem Solving for Introductory Physics

.  Makeaclear diagram for the situation to be analyzed.

[1.  Formamental image of the situation and imagine its time development if appropriate. Make
predictions about the outcome of the problem. (Ex: The box will accelerate downward at
(Oto <1)timesg.)

1. Break complicated problemsinto a collection of smpler sub-problems. Solve the sub-
problems and relate the results to solve the complete complex problem. Problems may be
divided:

a. To study each mass or particle individually. The several components of the motion of each
particle and the relative motions on the severa particles will be subject to constraints that
must be expressed algebraically to reassembl e the solution of the complex problem.

b. Along thetimeline. The problem may be analyzed for the interval t; to t, and the end
results used as initial conditions for the interval t, to ts.

V. Solvetheresulting equations algebraically if possible using full vector notation where
appropriate. Substitute the numerical datawith associated units for each symbol in the result.
In addition to the most precise statement that you can give for the result, give three significant
figure answers with appropriate units and vector notation for problems with numerical data.

V. Stateyour result in the language of the problem statement (without reference to coordinates
that you have chosen, etc.).

VI. Compare the results with your expectations from 1. What laws were used, and what did your
learn about the content of those laws? Identify the mathematical techniques required for the
solution. Master them.

VII. Check the units of your answer and any characteristic limits.

Step three of our general problem solving method.

I11. Break complicated problemsinto a collection of simpler sub-problems. Solve the sub-problems
and relate the results to solve the complete complex problem. Problems may be divided:

a. To study each mass or particleindividually. The several components of the motion of each
particle and the relative motions on the severa particles will be subject to constraints that
must be expressed algebraically to reassembl e the solution of the complex problem.

b. Along the time line. The problem may be analyzed for theinterval t; to t,, and theend
results used asinitia conditionsfor the interval t; to ts. It may be necessary to keep the
results at the boundary times (like to) as algebraic expressions until the end of the
caculation.

To be relevant, we will examine constant accel eration examples.
X() =%, + Vot + Yoat?
v(t) =v, +at
a(t) =a; the constant acceleration

Therelations are valid only if the acceleration is constant over the entire time
interval of interest. The values Xg and v are the position and velocity at theinitial
time, the beginning of the timeinterval, and t represents the time that has elapsed
sincethe particle was at the initial position traveling with theinitial velocity.
Note that one need learn only the relation for x(t) which | refer to as the Master
Equation for Constant Acceleration. The equations for v(t) and a(t) follow easily by
taking time derivatives recalling that X, Vo and a are constant values.
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Case |: Studying each particle or mass separately:

Treat asa 1-D problem. A passenger is behind acommuter train running at her
maximum speed of 8 M/s to catch atrain. When sheis adistance d from the
rearmost entrance, the train begins to accelerate, starting from rest, at a constant 1.0
M/ away from her. A.) Givend =30 m, will she be able to catch up to be

adjacent the entrance so she can jump on thetrain ?

B.) Make a graph showing position vs. time for the train and for the woman. Set
X(0) = Ofor thetrain. C.) Thereisacritical value of d = d; such that she can just
barely get to the entrance; find it ! Look at your plot; what happens as d varies?
Y ou could have solved part A.) by using the quadratic formula. What happensin
the quadratic formula approach when you have a critical situation? D.) For dc,

compare the woman's velocity with that of the train when she catchesit. What was
the train's average velocity between 0 and tegch in this case?

Casell: Dividing a problem along the timeline.

A carinitially at x = 0 accelerates from rest at a constant rate +A fromt=0tot =
t.. Att, thedriver begins braking at a uniform rate to give a constant acceleration
of -2A. The car comesto a stop after traveling atotal distance L in atotal elapsed
time of T. Find the distance that the car had traveled and the time when the brakes
were applied.

Solvefromt=0tot =t agebracdly. x(t,) = 1/2At,2 and v(t) = At;. Usethe
final values from thefirst timeinterval astheinitia values for the next time

interva: t;. to tr.. The expressions for velocity are computed as dx/dt. Use v(tg )
= 0.

Problem Solving for Compound Newton's Law Problems

.  Makeasketch and form a mental moving picture of the time development of the system.

1. Makeafreebody diagram for each mass and for any point or entity acted on by more than
two forces. The free-body diagram for a body includes al the forces that act on that body and
no others.

[1l.  For each massor entity chosen in 11, choose coordinates (The axes must be perpendicular,
and an axis should be chosen parallel to any component of the acceleration that you know.
The acceleration perpendicular to aninclineisusualy zero - If true that would be aknown.)
and make aforce table. Apply Newton's Second Law for each mass or entity chosen.
Generate the Newton's Law equation for each component of the motion for each entity
chosen.

V. Add all equations of constraint applying to the motions of the individual masses such as
ary = 0. Add the equations for the geometric constraints relating the motions of the several

particles such as agx = - 1/» ay. Express any other information available in the problem

statement as an equation or initial (boundary) condition such as vy = 3.0 M/. Also add
supplemental relations based on Newton's third law or the equal magnitudes of the forces
exerted at either end by ideal strings (tension) or struts (compression). In the cases that the
strings or struts have mass, include free-body diagrams and Newton's Laws to analyze their
motions.

V. Solvethe equations using the Addition-Subtraction and Substitution Methods. When
appropriate, | recommend substituting the constraint equation and then using addition-
subtraction to eliminate the internal or common force. Additional algebraic and calculus
techniques may be necessary. Complete the solution by substituting numeric data with units

9/23/04 Physics Handout Series: Basic Problem Solving 2



for each known. Input information from friction models at this point after proposing that the
contacting surfaces dip (kinetic) or do not dip (static) relative to one another.

V1. Statetheresultsin the language of the problem statement.

VII. Review the results and compare them with your expectations. What did you learn? What
techniques were necessary to complete the problem solution? Pay specid attention to the
magnitudes of numerical results. Examine limits such asthe largest and smallest meaningful
angle. Develop an intuition for the sizes of forces, accelerations, etc. expected in various
situations.

techniques were necessary to complete the problem solution? Pay special attention to the

magnitudes of numerical results. Develop an intuition for the sizes of forces, accelerations, etc.
expected in various situations.

Circular Motion:
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Polar Coordinates

The Coordinate Directions are the directions that the coordinate point meoves
when one coordinate 15 given a small positive increment while the other
cootdinates are held fized. If ondy r iz changed, the point moves radially away
from the origin defining the radial direction ¥ When q is changed by +dq, the
point moves r dq [dg = Zp moves 2pr] counterclockwise around a circle of radius
r. For small dq, the direction of the motion 1z along a tangent line to the
coortdinate circle at the point in the positive sense. Thiz direction is the theta q or
tangential direction at the point. Note: the radial and tangential directions change
as the coordinate point changes. The Cartesian systemn iz the only one for which
the coordinate directions are the same for BVEry point.
F=cosgi+sing ] q——smq1+cc}sq]

The line element in polar coordinates 12 the change in position when all of the
coortdinates are given small increrments:

di =dr =7(r+dr, q+dq)-r(r, q) = drr +rdqq

Dividing by dt, we see that the velocity iz computed as 383, = d0g, F + {84 6.
To begin, we want to avodd integrating or differentiating directions like ¥ and 8
which are not constants. Instead, we will use 4, §, and ¥ which are constants.

F(t) = R cos(q) i+ R siniq)
BEv computing time derivatives, we can find expressions for ¥(t) and a(t).
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(1) = - 184 B sin(q) 1 + 48/4¢ K cos(q) j
+ (2R{3¢ Y[oosg 1 + sing 7]
For circular motion, 383, = 0.

wit) = - W84+ E sin(q) i + 34 R cos(q) §
= 38}4; B [- sing i + cosq ]

alt) = - (38302 R [cosq i + sing 7] + (d20/dt2) E [- sing 1 + cosq J]
Mow that the derivatives are completed, we can express the results using Fand 8

B(t)= /R = R 8 and At =P R(-H+aR O

where we have defined w = 48/3y and o = d28/dt2. Tt follows that w = +¥/p where

the positive sign 12 for counter clockwize motion aroung the circular path.

For circular motion, the welocity must always be along a tangent to the circle
az a radial component of the welocity would carry the particle off the circular
path. The acceleration can have both radial and tangential components. The radial
conponent 13, in fact, negative or towards the center (centripetal) rather than away
from the center (radial). The centripetal component of the acceleration has
maghitude v&/R where v iz the speed of the particle and R iz the radius of the
path. The tangential component of the acceleration is just 4943, the time rate of
change of the speed with counter clockwisze motion chosen as positive by
convention.

a=valp (- F) + W g

How do you change a vector?

The magnitude of v is v =, hence the rate of change of the magnitude:

Vxﬂ .
v - _dt - [dv] | thecomponent of &V parallel tov
dt oy Latdi ot

*Dot product measures the degree to which two wectors are in the same direction.

The direction is ¥ = ¥y from which we compute

ﬂ yxadv
dv = R @] 1= 1],
dt /vxv 2 [Vxv ]3/2 v Ldt I

W conclude that a change parallel to the original direction of a wvector changes its
magritude, and a change perpendicular to the original direction of a wector
changes it direction.

Exercises: Let & = 1001 and E = 200 1. Work only to first order in the A's.
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1.y AZ =051, estimate AA and AR MNote AA is not a unit vector!
2. AK = 051, estimate Ak and Af

374K = 1.07, estimate A4 and A&

41 AF = 1.05, estimate AB and AB.

The change in a direction is always perpendicular to that direction. “Why? %What
would a change parallel to a unit vector alter?

Inner Product of ¥Yectors.

AxB = ABcosd = A B +AB, + AB,
Thisrelation is particularly important as it is used to evaluate v °= v xv = 2 +V +VE.
The component definitions of the inner product can be used to evaluate the

derivatives.
dA-B) _dA) o 5 dB) ,dvw)_ . d)
_ gt T g B A and =g =2V
That isthe product rule works for vector products. It works for the cross product as
well asfor the dot product.
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